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Wh

y should we use distributed training?

We said we'd use HPC + distributed training in our proposal ;)

It allows to more quickly train large models on large, complex datasets
We have large, complex graphs; a lot of potential intra-event parallelism
We can have large simulated datasets in HEP

Publishing research on large scale GNN training will be valuable to the

community



Parallelism strategies
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Data parallelism, synchronous Updates

Gradients are computed locally and summed \

across nodes. Updates are propagated to all

nodes \

o stable convergence
W

e scaling is not optimal because all nodes have

to wait for reduction to complete /

e global (effective) batch size grows with

ALL-REDUCE
SYNC. STEP

=

Synchronous SGD, decentralized
number of nodes



Parallelizing Graph Neural Networks

e Most deep learning literature on scaling training is on computer vision

applications
e Graph deep learning is much newer, so methods for scaling are much less

established
e Also, graph deep learning is a diverse set of applications, not all of which are

applicable to us
o E.g., FaceBook has (probably) the largest social network graph, but it'’s

essentially just one enormous graph [ Shared Flsystem ]
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Our GNN parallelism

e Naive domain parallelism
o Split into sectors, train on them independently

o You don’t need the whole detector context to find
tracks in a region

o (Minor) technical challenges in doing inference on
a whole event

o Small batch sizes are good for generalization
e Proper domain parallelism

o Break graph into sectors/partitions, but handle
the boundaries with communication

Other approaches
also under
consideration

o Definitely more difficult to implement



HPC scaling work with Cray BDC

e Through the Cray Big Data Center collaboration, we’re engaging with folks
from Cray and LBNL’s CRD to push on HPC scaling of GNNs (for tracking)

o Strong interest in scaling GNNs in PyTorch

o The basic plan is to do large scale training of GNNs in a larger Population
Based Training run

e Computational challenges
o Graphs with sparse connectivity => need sparse op support
o Variable sized graphs => need to handle load imbalance at scale
o Large scale training of GNNs => not much experience/intuition

e Using my PyTorch implementation of message-passing and “attention”
networks here: https://github.com/sparticlesteve/heptrkx-gnn-tracking




Single node performance [Saliya Ekanayake, LBNL]

e Compared speed and memory of dense and multiple sparse representations

Training Time (s) Training Time (s)
Dataset N | agnn dense agnn agnn

(tr/val) scatter add spspmm

Med 8 24.0416 9.63175 10.6389

(7/1)

Big 64 81.9128 102.74

(60/4)

Medium 8 (7/1)

e PyTorch-Geometric was the best of .
what we tested in terms of speed and L.
memory .

Big 64 (60/1)
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Scaling

e Distributed training scaling on OLCF and NERSC machines

e Scaling efficiency is not bad, actually, considering that it's
expected to be adversely affected by load imbalance
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Training instabilities

Occasionally suffering from spikey/unstable behavior in the training loss when training
distributed

—— Train

I've spent a bit of time digging into this °%1 ~— Validation
o Tracking gradient norms, weight norms ool Example
o Reducing graph size variance loss spike
03 in training

o Gets worse with larger models §
o Improved somewhat with layer norm, weight decay ,.

It was not fully solved, but | expect it’s related to the
interactions between, class weights (real vs. fake edges), °]

variable sample sizes and purities, optimizer momentum, S S
and gradient reductions as averages of averages.

Other things expected to help
o Stabilize training with auxiliary targets (e.g. predicting p+)
o Balance data sampling
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Balanced data sampling

e Distribution of graph sizes leads to load

imbalance

e Solution in development, inspired by the
work done in Etalumis project:

https://arxiv.org/abs/1907.03382

O

O

e There can be effects on
convergence, which we’ll
need to study

O

o 2008
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Bin dataset into buckets of similar “size”

Sample batches from these buckets

It worked for Etalumis,

though

Per-Worker HEP-TRKX-GNN flops 2 Epochs, 16 ranks, batch-size = 1
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Outlook and next steps

This work stalled because of lack of time, but is now being picked back up

Our original plan was to use Cori KNL for a large scale study (and submit to something like
SC, IPDPS), but this has been abandoned

o KNL speed was factor ~8 slower than Haswell, would require considerable effort with
Intel to improve; decided not worth it

o Haswell system could still be useful, though it is in high demand nowadays

Current plan is to target a smaller system with GPUs (e.g. Cori-GPU) to wrap up the work
with Cray, and submit to a workshop

After that, there are more fun things to do
o Push further on scaling, run on Summit and upcoming Perimutter
o Smarter graph partitioning/parallelization

o Scale the newer methods explored by Nick and Daniel (and others)
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